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a b s t r a c t

This paper proposes an extension scheme for the application of the single phase multi-block lattice Boltz-
mann method (LBM) to the multiphase Gunstensen model, in which the grid is refined in a specific part of
the domain where a fluid–fluid interface evolves, and the refined grid is free to migrate with the sus-
pended phase in the flow direction. The method is applicable to single and multiphase flows, and it
was demonstrated by simulating a benchmark single phase flow around a 2D asymmetrically placed cyl-
inder in a channel and for investigating the shear lift of 2D neutrally buoyant drop in a parabolic flow.
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1. Introduction

The lattice Boltzmann method (LBM) has been successfully used
for solving variety of fluid flow problems. However the LBM uses
equidistant lattice spacing since the propagation step is dependent
on discrete velocity direction vectors with constant magnitudes.
This dictates the use of a structured grid, which leads in the case
of insufficient lattice spacing to some distorted results. To remedy
this problem and for undergoing grid independence test a finer
grid is usually used. This increases the computational expense
and degrades the LBM efficiency.

Several models were introduced to improve the LBM quality,
and to save computational time (Fillipova and Hanel, 1998; He
and Doolen, 1997; He et al., 1996; Huang et al., 2006; Imamura
et al., 2005; Kandhai et al., 2000; Li et al., 2005; Lin and Lai,
2000; Liu et al., 2009; Shu et al., 2001; van der Sman, 2004; Yu
and Girimaji, 2006; Yu et al., 2002), especially for problems related
to turbulent flows, and flows in complex geometries such as por-
ous media. These models can be classified either by the method
used: interpolation, hybrid LBM, and grid refinement, or by the
nature of the grid: structured and unstructured grid.

Interpolation method was first suggested by He et al. (1996),
who noted that the density distribution function was continuous
in the physical space therefore it was possible to define its value
on a non-uniform grid through interpolation. The method was
ll rights reserved.
further extended by Shu et al. (2001), and Li et al. (2005) who used
Taylor series expansion and least square respectively, to evaluate
the distribution function rather than using a direct interpolation.
Imamura et al. (2005) used local time step on non-uniform grid
to accelerate the solution since each grid point had its own time
step based on the local advection time stability condition.

Hybrid LBM for unstructured grid combined the LBM with some
traditional CFD tools like finite difference, finite volume, and finite
element. Hybrid LBM benefited from the LBM stability, which re-
sulted from the use of the particle velocity in the model instead
of the macroscopic velocity. This guaranteed the satisfaction of
the Courant–Friedrichs–Lewy (CFL) stability condition, while
maintained the accuracy and efficiency of the traditional CFD tools
(Kandhai et al., 2000; Huang et al., 2006).

An interesting unstructured LBM model was proposed by van
der Sman (2004) in which no interpolation was required, since par-
ticle velocity in this model was different for different lattice sites.
This led to the elimination of the undesired numerical diffusion
caused by the interpolation step.

Grid refinement methods were designed for structured grids in
which a finer mesh was needed in parts of the domain character-
ized by complex geometry, and where higher accuracy was re-
quired. Fillipova and Hanel (1998) introduced the first model
which passed information from the post-collision distribution
functions between the coarse and the fine grids. The transfer of
data maintained continuous viscosity and Reynolds number
throughout the domain. The model also handled very well complex
geometries by specially treating curved boundaries. Lin and Lai
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(2000) proposed a composite block-structured LBM in which a
coarse grid covered the whole domain and only areas of interest
were patched with a fine grid blocks. This method did not need
time interpolation, because solutions on both grids were at the
same time level. Yu et al. (2002) suggested a very efficient multi-
block method in which the fine and the coarse grids did not overlap
throughout the domain, and information transfer occurred only at
the grid interface. This method was later expanded to 3D by Yu and
Girimaji (2006) and will be revisited in Section 2.

Multiphase and multi-component flows were not as extensively
studied with respect to grid refinement, as single phase flows. The
peculiarity of the multiphase flows is due to the movement and
deformation of the suspended phase. This hampers the use of pre-
set grid refinement techniques since the area of interest is not sta-
tionary. Tolke et al. (2006) proved in their Gunstensen based LBM,
that the interface was distorted relative to the magnitude of the
capillary forces, when the fluid interface was allowed to pass
through the grid interface of different preset fixed grids. They also
indicated using a mathematical model that the useful grid level in
such cases was very restricted. Thus they resorted to the use of an
adaptive grid method, in which the physical interface was always
discretized on the finest grid level. Ozawa and Tanahashi (2005)
presented a model for multiphase flow, with an adaptive unstruc-
tured grid in which cubic interpolation was used with the volume/
area coordinates method for the streaming step and moving least-
square method for the collision step. The mesh was refined based
on a number density threshold using the bisection algorithm.

The present work’s objective is to provide a simple algorithm,
aiming at saving considerable computational time in simulations
where local grid refinement is required, and especially applicable
to multiphase flows with highly deformable interface. To avoid
the difficulties faced by Tolke et al. (2006), and to maintain a rela-
tively simple approach using standard structured grid LBM, a Gun-
stensen based model combined with the multi-block method of Yu
et al. (2002), is proposed here. The difference in the proposed mod-
el lies in that, a fine grid block covers the entire fluid interface and
migrates with it, so that the physical interface does not cross the
grid interface. This is performed by tracking the mass center or
the average velocity of the suspended fluid, which acts as a trigger
to impose node type exchange at the grid interfaces in a way that
does not alter the physical properties of the various fluids. The
node type exchange occurs without time lag during the propaga-
tion step in the coarse block. The grid interface is always imposed
where a single phase exists. This broadens the potential applicabil-
ity of the algorithm to other LBM models such as the Shan and
Chen and the free energy models.

This paper is organized as follows: Section 2 reviews LBM, the
Gunstensen model, and the migrating multi-block LBM. Section 3
includes the simulation of a benchmark single phase flow around
an asymmetrically placed cylinder in a channel, and a multiphase
simulation of the lift of neutrally buoyant drop in a parabolic flow.
Section 4 is for the conclusion and future work.

2. Numerical method

2.1. Standard LBM and the Gunstensen model

The Bhatnagar–Gross–Krook (BGK) lattice Boltzmann method is
used extensively as an alternative computational technique for
solving variety of fluid problems. The D2Q9 isothermal, single-
relaxation model is based on Boltzmann kinetic equation:

df
dt
þ n � $f ¼ �1

k
ðf � f eqÞ ð1Þ

f is density distribution function, n is macroscopic velocity, and k is
relaxation time in the physical space. Eq. (1) is first discretized in
the velocity space using finite set of velocities {ni} and this leads
to the following:

dfi

dt
þ ni � $fi ¼ �

1
k
ðfi � f eq

i Þ ð2Þ

The equivalent set of Cartesian velocities in the D2Q9 LBGK has
the following direction vectors:

c0 ¼ ð0:0Þ

ci ¼
ffiffiffi
2
p

c cos ði� 1Þp
4

h i
; sin ði� 1Þp

4

h i� �
for i ¼ 2;4;6;8

ci ¼ c cos ði� 1Þp
4

h i
; sin ði� 1Þp

4

h i� �
for i ¼ 1;3;5;7

ð3Þ

where c ¼ dx
dt

is the lattice velocity, dx is lattice space, and dt is the
lattice time step. The equilibrium distribution function is expressed
as:

f eq
i ¼ qxi 1þ 3

c2 ci � uþ
9

2c4 ðci � uÞ2 �
3

2c2 u � u
� �

ð4Þ

where xi are the weighting constants for the various lattice links:

xi ¼
4
9

for i ¼ 0

xi ¼
1

36
for i ¼ 2;4;6;8

xi ¼
1
9

for i ¼ 1;3;5;7

ð5Þ

u and q are the macroscopic velocity and density, respectively. The
macroscopic density and momentum are calculated from the distri-
bution function by a simple arithmetic summation:

q ¼
X8

i¼0

fi ¼
X8

i¼0

f eq
i ð6Þ

qu ¼
X8

i¼1

cifi ¼
X8

i¼1

cif
eq
i ð7Þ

Eq. (2) is further discretized in space and time to yield:

fiðxþ cidt ; t þ dtÞ � fiðx; tÞ ¼ �
1
s
½fiðx; tÞ � f eq

i ðxÞ� ð8Þ

where s ¼ k=dt is the lattice relaxation time. The speed of sound in
this model is cs ¼ c=

ffiffiffi
3
p

and the pressure is calculated directly from
the equation of state for ideal gas p ¼ qc2

s . The kinematic viscosity is
a function of the relaxation time and it is expressed as follows:

m ¼ ðs� 0:5Þc2
s dt ð9Þ

Using Chapman–Enskog expansion the BGK can recover the Na-
vier–Stokes equations to a second order accuracy for low Mach
numbers and slow Density variation (Chen et al., 1992; Guo
et al., 2000). In classical BGK model the square lattice length dx

and time scale dt are taken as unity. The same will be used in the
proposed model.

The Gunstensen model for binary mixtures introduces a red and
a blue fluid density distribution functions Ri(x, t) and Bi(x, t). The
total density distribution function is the sum of the two functions:

fiðx; tÞ ¼ Riðx; tÞ þ Biðx; tÞ ð10Þ

To track the interface of the fluid–fluid interface, a phase field is
defined as follows:

qNðx; tÞ ¼ Rðx; tÞ � Bðx; tÞ
Rðx; tÞ þ Bðx; tÞ ð11Þ

where N is the direction normal to the interface. The macroscopic
densities for the red and blue fluids are calculated by the following
relationships:
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Rðx; tÞ ¼
X8

i¼0

Riðx; tÞ ð12Þ

Bðx; tÞ ¼
X8

i¼0

Biðx; tÞ ð13Þ

During initialization of the LBM the directional densities are cal-
culated by Ri = qRxi, Bi = qBxi where qR and qB are constant initial
densities. In this model unit density ratio was used leading to
qR = qB. After initialization the various directional densities are cal-
culated by the segregation rules.

The two fluids can have different viscosities, hence different
relaxation times. The interface is made of a fluid mix with an effec-
tive viscosity calculated by the following equation:

meff ¼ ðseff � 0:5Þc2
s dt ¼

R
Rþ B

� �
mR þ

B
Rþ B

� �
mB ð14Þ

To create interfacial tension and segregate the two immiscible
fluids, the Gunstensen LBM uses two-step collision rules (Gunsten-
sen et al., 1991; Lishchuk et al., 2003; Reis and Philip, 2007). The
main collision step is the first step of the collision rules:

fi

_

ðx; t þ dtÞ ¼ fiðx; tÞ �
1
s
½fiðx; tÞ � f eq

i ðq;qu�Þ� þ /iðxÞ ð15Þ

where fi

_

refers to post-collision distribution function, and /iðxÞ is a
source term used for inducing the desired interfacial tension and for
applying an external force.

The creation of a pressure step through the interface is executed
by the method of Lishchuk et al. (2003) using the following force:

FðxÞ ¼ �1
2
aK$qN ð16Þ

where a is a surface tension parameter, K is the curvature, and $qN

is a phase field gradient which has a nonzero value only at the inter-
face. An accurate relationship between the source term and the
macroscopic force was initially suggested by Guo et al. (2002).
The same was later used by Halliday et al. (2007) for spatially vary-
ing force as follows:

/iðxÞ ¼ xi 1� 1
2s

� �
3ðci � u�Þ þ 9ðci � u�Þci½ � � FðxÞ ð17Þ

where the corrected macroscopic velocity is calculated by:

u� ¼ 1
q
X8

i¼1

fici þ
1
2

FðxÞ
" #

ð18Þ

Meanwhile for a constant body force the following simpler rela-
tion is used:

/i ¼ xi
1
k2

F � ci ð19Þ

where k2dab =
P

ixiciacib and for the 2D LBM k2 = 1/3, F is a constant
macroscopic force.

The next collision step is the segregation process which is
achieved by imposing zero diffusivity of one color into the other.
Numerical algorithm for the segregation step was used in the mod-
el of Gunstensen et al. (1991). A local color gradient is identified as
follows:

Gðx; tÞ ¼
X

ij

ciðRjðxþ ci; tÞ � Bjðxþ ci; tÞÞ ð20Þ

A local color flux is calculated by the following formula:

J ¼
X

i

ciðRiðx; tÞ � Biðx; tÞÞ ð21Þ

The segregation step is achieved by forcing the local color flux
to align with the direction of the local color gradient. Thus the col-
ored distribution functions at the interface are redistributed such
that �J � G is maximized and the following constraints are applied:
X
i

Ri

_
_

ðx; tÞ ¼ Rðx; tÞ

Bi

_
_

ðx; tÞ ¼ fi

_

ðx; tÞ � Ri

_
_

ðx; tÞ

ð22Þ

D’Ortona et al. (1995) proposed a formulaic approach, which
was later modified slightly and implemented by Halliday et al.
(2007) using the following relationship:

Ri

_
_

ðx; t þ dtÞ ¼
R

Rþ B
fi

_

ðx; t þ dtÞ þ b
RB

Rþ B
xi cosðhf � hiÞjcij

Bi

_
_

ðx; t þ dtÞ ¼
B

Rþ B
fi

_

ðx; t þ dtÞ � b
RB

Rþ B
xi cosðhf � hiÞjcij

ð23Þ

where hf and hi are the polar angle of the color field, and the angle of
the velocity link respectively, b is the segregation parameter. Ri

_
_

;Bi

_
_

refer to the post-collision post-segregation red and blue functions
respectively. The numerical segregation provides a sharp interface
desired for many applications, especially when the size of the sus-
pended fluid is relatively small. Hence this method is used in this
work together with Eq. (19) for the perturbation of the interface
prior to the segregation step.

After segregation the two fluids are propagated separately by
the following formulae:

Riðxþ cidt ; t þ dtÞ ¼ Ri

_
_

ðx; t þ dtÞ

Biðxþ cidt; t þ dtÞ ¼ Bi

_
_

ðx; t þ dtÞ
ð24Þ

The macroscopic observables are then calculated using Eqs. (6)
and (7). The individual fluid densities are calculated Eqs. (12) and
(13). For detailed information on the Gunstensen LBM we refer
the reader to the work of (Dupin et al., 2003, 2005, 2007; Halliday
et al., 2007).

2.2. Migrating multi-block LBM

The following is a brief description of Yu et al. (2002) multi-
block LBM tailored for this work domain, in which the width is
much smaller than the length. The domain shown in Fig. 1 consists
of three blocks: an upstream coarse block, a fine block, and a
downstream coarse block. The ratio of the lattice spacing between
the fine and coarse blocks is defined as:

m ¼ dc
x

df
x

ð25Þ

dc
x and df

x are the lattice spacing in the coarse and the fine grid
blocks, respectively. To maintain the same viscosity, and therefore
the same Reynolds number in the various blocks, the relaxation
times have to satisfy the following equality:

sf ¼
1
2
þmðsc � 0:5Þ ð26Þ

Each grid interface consists of overlapping two sets of coarse
and fine nodes with one additional set of fine nodes filling in the
gap as shown in Fig. 1. The transfer of the post-collision distribu-

tion functions f f
i

_

¢ f c
i between the different grids occurs before

the streaming step. To maintain the same lattice velocity
ðdc

x=d
c
t ¼ df

x=d
f
t Þ between the various grids, the time step ratio is

the same as the spatial ratio ðm ¼ dc
x=d

f
x ¼ dc

t=d
f
t Þ. After one collision

step in the coarse block a transfer of data ðf f
i

_

 f c
i

_

Þ is required at
the indicated locations in Fig. 1 by the following rule:

f f
i

_

¼ f eq;c
i þ sf � 1

mðsc � 1Þ ½f
c
i

_

�f eq;c
i � ð27Þ

After m collision steps in the fine grid a transfer of data ðf f
i

_

! f c
i

_

Þ
is required at the indicated locations in Fig. 1 by the following
formula:



Fig. 1. Illustration of the standard multi-block LBM domain as it pertains to the single component flow simulation of this work.
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f c
i

_

¼ f eq;f
i þm

sc � 1
ðsf � 1Þ ½f

f
i

_

�f eq;f
i � ð28Þ

A symmetric cubic spline interpolation is required for calculat-

ing f f
i

_

on those fine nodes, which do not overlap with the coarse
nodes at the grid interface. This is done by the following formula:

f f
j

_

ðxÞ ¼ ajðx� xjÞ3 þ bjðx� xjÞ2 þ cjðx� xjÞ þ dj ð29Þ

The coefficients in Eq. (29) are calculated as follows:

aj ¼ Mjþ1 �
Mj

6h

bj ¼
Mj

2

cj ¼ ðf f
jþ1 � f f

j Þ �
Mjþ1 þ 2Mj

6

� �
h

dj ¼ f f
j

ð30Þ

where Mj are second order derivatives of the function f f
j

_

and
h = yj � yj�1 measured in the coarse block. The Mj functions are cal-
culated by solving a matrix equation, which leads to a tridiagonal
coefficients matrix suitable for the Thomas algorithm, and the nat-
ural spline end condition is stipulated where M0 ¼ Mn ¼ 0.

A three-point Lagrangian interpolation scheme is used to calcu-
late the post-collision distribution function on the grid intersection
at the desired time in coarse units:

f f
i

_

ðtÞ ¼
X3

p¼1

f f
i

_

ðtpÞP3
q¼1;p–q

t � tq

tp � tq

� �
ð31Þ

This leads to the following relation for the temporal interpola-
tion with for example a spacing ratio m ¼ 4 and time measured
in coarse steps:

f f
i

_

ðtþ0:25Þ ¼ �0:09375 f f
i

_

ðt�1Þ þ 0:4375 f f
i

_

ðtÞ þ 0:65625 f f
i

_

ðtþ1Þ

f f
i

_

ðtþ0:5Þ ¼ �0:125f f
i ðt�1Þ þ 0:75 f f

i

_

ðtÞ þ 0:375 f f
i

_

ðtþ1Þ

f f
i

_

ðtþ0:75Þ ¼ �0:09375f f
i ðt�1Þ þ 0:9375 f f

i

_

ðtÞ þ 0:15625 f f
i

_

ðtþ1Þ
ð32Þ

For simplicity a ratio m = 2 was used throughout this work. This
required the utilization of only f f

i

_

ðtþ0:5Þ from Eq. (32) for the tem-
poral interpolation.
To implement the multi-block concept on the Gunstensen mod-
el care should be taken of the collision step which involves the sum
f f
i ðx; tÞ of the two distribution functions Ri(x, t) and Bi(x, t) as it was

expressed in Eqs. (10) and (15). Therefore the sum post-collision
distribution function f f

i

_

ðx; t þ dtÞ should be used in Eqs. (27) and
(28) for the required transfers at the grid interfaces. Since the
streaming step in the Gunstensen model occurs with separate
post-collision post-segregation distribution functions Ri

_
_

ðx; tÞ and
Bi

_
_

ðx; t þ diÞ, a transfer of the grid interface information from the
sum function f f

i

_

ðx; t þ dtÞ to the suspending component function
Bi

_
_

ðx; t þ dtÞ is necessary before streaming. This is to ensure that
the transfer of information at the interface between the different
grids is propagated through the function Bi

_
_

ðx; t þ dtÞ into the fine
block. This transfer is not required for the function Ri

_
_

ðx; tÞ since
the physical interface in the proposed model does not cross the
grid interface contrary to the experiment of Tolke et al. (2006),
and the exchange of information from the various grids is done
only at the single phase interface nodes.

The migrating multi-block method’s main feature is the ex-
change of node type at the grid interfaces. For the fluid–fluid inter-
face to be constantly covered by a fine grid while moving, an
exchange of boundary coarse nodes with fine nodes downstream
of the fluid interface, and alternatively an exchange of fine bound-
ary nodes with coarse nodes upstream of the interface are needed
as shown in Fig. 2.

The node type exchange occurs when the distance travelled by
the suspended fluid mass center exceeds one coarse lattice spacing
in the flow direction. This exchange happens during one coarse
time step and it starts with the streaming in the coarse block. Here
a distinction should be drawn between the two coarse blocks. The
propagation step should start in the downstream coarse block first,
because after propagation the coarse distribution function f c;d

i ðx; tÞ
is set to zero at the location indicated as old diminishing coarse
nodes in Fig. 2, thereby allowing only fine nodes to occupy it. This
can be done since the information needed for the propagation has
already been passed.

To create two new sets of fine nodes Bi

_
_

ðx; tÞ on the new grid inter-
face downstream of the suspended fluid, the extrapolation method is
used at the location indicated as newly created fine nodes in Fig. 2.
For spacing ratio m� 2, a careful selection of the extrapolation
scheme should be done in order to minimize any possible numerical
diffusion, since the extrapolation method could become less accu-
rate. Meanwhile, during the same coarse time step, at the grid inter-

face the following functions (f f
i

_

ðx; tÞ;Bi

_
_

ðx; tÞ;qNðx; tÞ) are set to zero



Fig. 2. Illustration of the migrating multi-block LBM domain as it pertains to the multiphase flow simulation used in this paper.
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in the locations designated as old diminishing fine nodes in Fig. 2.
This will not influence the solution because the information stored
in these fine nodes is not required for any subsequent calculations.
The propagation in the fine block will not include the vanishing
nodes, which position in the domain is now occupied by only coarse
nodes. Extrapolation is used again to create a new set of coarse nodes
f c;u
i ðx; tÞ at the locations indicated as newly created coarse nodes in

Fig. 2. This is followed by an immediate transfer of data from the fine
node at the new interface to obtain f c;u

i

_

ðx; tÞ needed for the propaga-
tion in the upstream coarse block. The next step is propagating the
upstream coarse block followed by the steps provided in the flow
chart of Fig. 3 which resemble the steps of the standard multi-block
model.

3. Simulation results and discussion

3.1. Asymmetrically placed cylinder in 2-D channel

To investigate the effects of the migrating block on the numerical
solution, an unsteady flow around an asymmetrically placed cylin-
der in 2D channel was simulated using fixed and migrating multi-
block schemes simultaneously. The results were compared with
some benchmark cases presented by Schafer and Turek (1996).

The center of the cylinder was located at 4.0 radii from the low-
er wall, 4.2 radii from the upper wall and 4.0 radii from the inlet as
shown in Fig. 4. The fine block covered the whole cylinder, and it
was 80 by 164 lattice squares. The total number of nodes in both
coarse blocks was 32,800. The ratio between the coarse and the
fine grid was m = 2. The relaxation times for the fine and the coarse
grids were sf = 0.58 and sc = 0.54, respectively. The average velocity
used for the calculation of the Reynolds number was:

U ¼ 2
3

Uð0;H2;tÞ ð33Þ

where H is the channel height, t is time, and U is the centerline
velocity.

The average velocity used for this simulation was U ¼ 0:0666
lattice units per time step, resulting in a Reynolds number
Re = 100. The extrapolation method was enforced on the outlet
boundary, and the bounce back condition was implemented on
the top and bottom walls as well as on the cylinder surface. The
method of Zou and He (1997) was applied on the inlet of the
domain using a parabolic velocity profile which was calculated
by the following formula:

Uð0;y;tÞ ¼
4Uð0;H2;tÞyðH � yÞ

H2 ð34Þ

Under these conditions was observed leading to periodic vortex
shedding. Instantaneous streamlines for the fixed block simulation
are shown in Fig. 5a. The Strouhal number defined as St ¼ Df

U
where

D is the cylinder diameter, f is the frequency of separation (the in-
verse of the period from peak to peak values of the lift coefficient)
was St = 0.293. This value matched well with the results given by
Schafer and Turek (1996).

The same simulation was carried out again with the fine block
migrating by one coarse lattice each 5 � 103 coarse time steps.
The Strouhal number was calculated as St = 0.297. This value
agreed well with those given by Schafer and Turek (1996)
(0.295 6 St 6 0.305). A qualitative comparison between the instan-
taneous streamlines of Fig. 5b, with the streamlines of Fig. 5a,
shows a very marginal difference caused by the moving fine block
after five consecutive shifts. The Strouhal numbers in both simula-
tions were derived using the lift coefficient graph of Fig. 6, which
was plotted together with the drag coefficients between coarse
time steps 3.7 � 104 and 4.0 � 104. The lift and the drag coeffi-
cients were calculated using the following formulae, respectively:

CL ¼
2FL

qU2D

CD ¼
2FD

qU2D

ð35Þ

The lift and the drag forces were computed by the following
equations, respectively:

FL ¼ �
Z

S
l @v t

@n
nx þ Pny

� �
dS

FD ¼
Z

S
l @v t

@n
ny � Pnx

� �
dS

ð36Þ

where FL was the lift force, FD the drag force, l was the fluid dy-
namic viscosity, P was the local pressure, vt was the tangential
velocity, and nx, ny were the x and y components of the normal to
the surface of the cylinder S.



Fig. 3. Flow chart of the migrating multi-block LBM for immiscible mixtures.

Fig. 4. Migrating multi-block LBM domain for the flow around an asymmetrically
placed cylinder in a channel, with the cylinder center location expressed as a
function of its radius.

Fig. 5. Instantaneous streamlines of a 2D channel flow over an asymmetrically
placed cylinder with Re = 100 time step 2.9 � 104 measured in coarse time units. (a)
Fixed multi-block in which the fine block is static having a center coinciding with
the cylinder center (b) migrating multi-block in which the fine block migrated in
the direction of the flow by one coarse space unit each 5.0 � 103 coarse time steps
and having its center advanced by 10 fine space units in the flow direction with
respect to the cylinder center.

Fig. 6. Lift and drag coefficients for fixed and migrating multi-block cases, calculated
for results taken between coarse time steps 3.7 � 104 and 4.0 � 104. A comparison of
the two cases indicates that the block migration altered the results just marginally.
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The comparison in Fig. 6 shows a reasonable agreement be-
tween the two cases and the lift coefficient was not symmetrical
with respect to the x axis. This was due to the asymmetrical place-
ment of the cylinder (Yu et al., 2002). The maximum absolute val-
ues for the lift coefficient, which was in the negative region, were
different in both simulations (0.98 for the fixed block, and 1.03 for
the moving block); However both maximum values agreed well
with the values given by Schafer and Turek (1996) (0.99–1.01).
The drag coefficients were 3.03 6 CD 6 3.14 for the fixed block
and 3.02 6 CD 6 3.138 for the migrating block. Both maximum
values were little below the values, which were reported by
Schafer and Turek (1996) (CD,max = 3.22–3.24). Fig. 7 shows the
vertical velocity contour and the fine block position after the
seventh block shift at coarse time step 3.6 � 104.

To test the quality of the data transfer through the grid inter-
faces and the effects of the fine block migration on the model re-
sults, the mass flux and the momentum flux were calculated at
the grid interface downstream of the cylinder as shown in Fig. 8.
The data were collected from the overlapping coarse and fine
nodes of the migrating block at the grid interface, and from the



Fig. 7. Vertical velocity contours, and location of the fine block with respect to the
cylinder at coarse time step 3.6 � 104.
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fixed multi-block nodes which occupied the same spatial locations.
The good match between the results of the fine and the coarse
block calculations at the migrating block interface was a measure
of the used interpolation scheme accuracy, and it showed that
the migrating block algorithm did not alter the outcome of the cal-
culations. The slight difference in the y components between the
migrating and the fixed block results was due to the difference in
the grid size, used for calculating the fluxes in both cases, and also
due to the fact that the nodes where the data collection occurred in
the fixed multi-block were not grid intersection nodes.

3.2. Lift of a neutrally buoyant drop in parabolic flow

The study of multiphase flows at low to moderate Reynolds and
Weber numbers, where the effect of gravity is neglected, is of inter-
est in many applications such as the study of drop suspension in
microgravity, and in the study of microfluidics. In very low gravity
shear and parabolic flows, the hydrodynamic lift force becomes
very important, since it is no longer overshadowed by the buoy-
ancy. The lift force is due to the hydrodynamic interaction of the
drop with neighboring boundary (Halliday et al., 2006) or it is
caused by a secondary velocity field at the drop surface (Legendre
and Magnaudet, 1998).

The goal of this section’s simulation was to validate the proposed
model by comparing the results for the lateral migration of a 2D neu-
trally buoyant drop placed near a wall in parabolic flow with other
numerical works. The other goal was to assess the quality of the pro-
posed migrating multi-block model results for the lift trajectory and
velocity, in comparison with those from the standard Gunstensen
model. The approach for the estimation of the shear lift velocity
was based on tracking the mass center of the drop. The result was
a displacement–time function used for the calculation of the drop
lateral velocity. The quality of the measurements depended heavily
on the nature of the grid, since the lift force was very small likewise
the change in the lateral position of the drop mass center. To mini-
mize the effect of periodicity in the flow direction while attaining
the drop equilibrium distance from the wall, a longer channel was re-
quired. For a better interface representation it was crucial to refine
the grid surrounding the drop. All of this resulted in a high computa-
tional cost for the standard LBM meanwhile it provided a good test
ground for the proposed migrating multi-block method.

Mortazavi and Tryggvason (2000) carried out a thorough numer-
ical investigation of the drop shear lift in Poiseuille flow. For the case
in which the ratio of the drop radius to the channel height was given
as f = 0.125, the viscosity ratio k ¼ ld

ls
¼ 8, the drop Reynolds number

Red = 10.0 and the Weber number We = 16, a normalized equilib-
rium distance from the wall of yeq

H � 0:30 was reported.
The drop behavior in parabolic flows is characterized by the fol-

lowing dimensionless numbers. The channel Reynolds number:

Rech ¼
UH
m

ð37Þ

where H is the channel height, U is the flow average velocity.
The drop Reynolds number is given by:

Red ¼
Ud
m

ð38Þ
The Weber number is expressed as follows:

We ¼ qU2d
a

ð39Þ

A domain made of 2,87,400 coarse lattice nodes and 168 by 300
fine lattice nodes, covered a drop with diameter d = 76 fine lattice
units, yielding a ratio f = d/2H � 0.125. The drop was placed at
coordinate (94, 245) measured in fine lattice nodes, the density
of both fluids was set to q = 0.514 and the surface tension param-
eter to a = 1.0 � 10�4. The relaxation times for the ambient fluid in
the fine and coarse grids were set to sf = 0.646 and sc = 0.573,
respectively. The drop relaxation time was sd = 1.666 leading to a
viscosity ratio k ¼ 8. The grid ratio between the coarse and fine
the block was m = 2. A constant force |F| = 2.14 � 10�8 was used
in Eq. (19) to induce a flow with an average velocity U ¼ 0:0064,
a drop Reynolds number Red = 10.0 and Weber number We � 16.
The bounce back condition was applied on the upper and the lower
walls, and the periodic condition was imposed at the inlet and the
outlet boundaries. In the migrating multi-block the following
equalities were required in the upstream coarse block after
streaming:

f c;u
i ðxfirst; y;1Þ ¼ f c;d

i ðxlast; y;1Þ
f c;u
i ðxfirst; y;2Þ ¼ f c;d

i ðxlast; y;2Þ
f c;u
i ðxfirst; y;8Þ ¼ f c;d

i ðxlast; y;8Þ
ð40Þ

where fc,u and fc,d are the distribution functions in the upstream and
downstream blocks, respectively. xfirst and xlast refer to the first and
the last fluid nodes in the horizontal direction, the numbers indicate
the lattice directions. In the downstream coarse block the following
was applied:

f c;d
i ðxlast; y;4Þ ¼ f c;u

i ðxfirst; y;4Þ
f c;d
i ðxlast; y;5Þ ¼ f c;u

i ðxfirst; y;5Þ
f c;d
i ðxlast; y;6Þ ¼ f c;u

i ðxfirst; y;6Þ
ð41Þ

The source term of Eq. (19) was augmented by the grid ratio m
in the coarse blocks as follows:

/i ¼ xi
m
k2

F � ci ð42Þ

The drop center of gravity normalized position with respect to
the drop axial normalized position is shown in Fig. 9. The migrating
multi-block result was compared with the solution of Mortazavi
and Tryggvason (2000). The normalized equilibrium distance
resulting from the migrating multi-block was yeq

H � 0:31. The pro-
posed model results were fairly good, in comparison with those
of Mortazavi and Tryggvason (2000). The inset in Fig. 9 is for the
phase field contours of the drop with superimposed snap shot from
the following dimensionless time steps 1.28, 20.48, 30.72, 39.68
and 46.72 respectively. The blue colored blocks in the inset are
the superimposed fine migrating blocks, while the green colored
are the coarse blocks.

To compare the results of the proposed model with those of the
standard LBM, the same flow condition and geometric settings
were used for a domain consisting of 2000 by 300 lattice squares
to avoid excessive computations in the standard LBM. The equiva-
lent domain for the migrating block scheme consisted of 1,37,400
coarse lattice nodes and 168 by 300 fine lattice nodes. The drop
was placed at coordinate (94, 248) measured in fine lattice nodes.

A dimensionless approach was used for the analysis of the re-
sults. H was selected as a characteristic length, U0 ¼ 3

2 U the undis-
turbed centerline flow velocity, as characteristic velocity, and the
inverse shearing strain rate _c�1 ¼ H

2U0
as characteristic time. The

shear rate was calculated at the vertical position 3H/4 since this
position was representative to the equilibrium point in the drop lift



Fig. 8. Graphs for the dimensionless mass flux in the x and y directions (a) and dimensionless momentum flux in the x and y directions (b) with respect to the y coordinates at
coarse time step 3.5 � 104, calculated for checking the quality of the data transfer through the grid interface between the fine bock and the downstream coarse block in the
migrating multi-block model. Comparison between the results of the moving fine grid interface’s nodes with those collected from the fixed multi-block coarse nodes which
occupy the same locations. M and F in the figure stand for moving and fixed blocks, respectively.
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activity space. The normalized fluid average velocities and the nor-
malized displacements of the drop mass center in the flow direc-
tion versus dimensionless time from the two simulations are
shown in Fig. 10. The lateral displacements normalized by the
channel width, versus the dimensionless time from both simula-
tions are shown in Fig. 11. The lift velocities were calculated from



Fig. 9. Drop mass center normalized lateral displacement by the migrating multi-block LBM compared with the solution of Mortazavi and Tryggvason (2000) for the case
with Red = 10.0, We = 16, k ¼ 8, and f = 0.125. No further data was provided for x/H > 13.3 since the drop reached the end of the domain (4000 � 300) in the MMB model
measured in fine lattice. The inset in the figure is for the phase field contours of the drop with superimposed snap shots from the following dimensionless time steps 1.28,
20.48, 30.72, 39.68 and 46.72 respectively. The blue colored blocks in the inset are the superimposed fine migrating blocks, while the green colored are the coarse blocks. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Normalized fluid average velocities in the x direction (a), and drop mass center normalized horizontal displacements in the x direction (b), for both the migrating
block and the standard Gunstensen model versus dimensionless time.

Fig. 11. Normalized displacement of the drop mass center in the y direction (a) for the migrating block and the standard LBM measured with respect to dimensionless time.
Normalized lift velocity (b) in the y direction for the migrating block and the standard LBM calculated with respect to the dimensionless time.
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the lift displacement–time data as time derivative by a finite differ-
ence scheme with second order accuracy then were normalized by
the centerline flow velocity as shown in Fig. 11.
It was clear from Fig. 11 that the velocities observed at t _c < 7
should be neglected due to the drop tilt during the initialization
of the simulations, and that the drop’s lift velocity is an order of



Fig. 12. Deformation index of the drops from both the standard LBM and the
migrating multi-block calculated with respect to the dimensionless time.

Fig. 13. Phase field contour for five consecutive snap shots taken at different time
steps and superimposed in the figure. The blue blocks are fine, and the green blocks
are coarse: (a) migrating multi-block and (b) standard LBM. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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magnitude smaller than its translational velocity. The same was
extracted in the work of Sukumaran and Siefert (2001) who stud-
ied the lift of the near-wall neutrally buoyant vesicles in shear
flow. The distance from the top wall at dimensionless time step
t _c ¼ 28:8 for the standard LBM was y

H ¼ 0:2733 versus y
H ¼ 0:2728

for the migrating block.
The deformation index DI ¼ ða�bÞ

ðaþbÞ, where a is the drop major axis

and b is the drop minor axis, varied between the values
0 6 DI 6 0.12 during the simulations as shown in Fig. 12. The
reduction in the DI associated with time was due to the reduction
in the viscous stress, when the drop drifted away from the wall
leading to a reduced DI.

Cox (1969) proposed a theoretical formula for the calculation of
the drop deformation in a general time-dependent fluid flow with
a range of capillary numbers and viscosity ratios. The time depen-
dence of the DI was through a decaying exponential function which
led after long time (steady state) to the following relationship:

DI ¼ 5ð19kþ 16Þ

4ðkþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

20
Ca

	 
2 þ ð19k
q

Þ2
ð43Þ

where Ca ¼ ls
_cd=2a is the capillary number. The strain rate used in

the calculation of this work’s capillary number was locally defined

by _cðyÞ ¼ 8U0

H2
H
2 � y
	 
��� ���. The deformation index calculated by Eq.

(43) yielded DI = 0.151 for the dimensionless time step _ct ¼ 12:8
and the calculated capillary number Ca = 0.78. The dimensionless
mass center location was y

H ¼ 0:824, which corresponded to the
location where the simulation results led to the highest value
DI = 0.12 as shown in Fig. 12. The difference between the measured
and the calculated deformation indices could be resulting from the
transient nature of the drop deformation under the shear lift as
measured from the simulation, compared to the steady state defor-
mation described by Eq. (43).

Fig. 13 presents the phase field contours, with the various posi-
tions of the drop generated by super-imposing consecutive snap
shots taken at different time steps.

To analyze the computational time advantage of the proposed
model the following formula was introduced:

G ¼ m
NxNy

mLxNy þ 1
m2 ðNx � LxÞNy

ð44Þ

where Nx and Ny are the domain length and width measured in fine
grids spacing respectively, and Lx is the length of the fine block. Eq.
(44) was based on the idea that for the calculation of one time step
in the coarse blocks expressed in fine lattice units as (Nx � Lx)Ny/m2,
there is a need for m time steps in the fine block having dimensions
LxNy and in the standard LBM with dimensions NxNy, respectively.
Eq. (44) is applicable only for 2D models, with the fine block cover-
ing the entire width. For the current simulation the formula leads to
a time gain G = 5.04. This was also confirmed by comparing the
computational time required for the simulations using the standard
Gunstensen model and the proposed migrating multi-block method
simultaneously. Using DELL Precision 490 workstation, one time
step in the standard model required 0.516 s for execution, while
the time needed for the same time step in the migrating multi-block
was 0.108 s leading to G ¼ tst

tmmb
¼ 4:77. The difference between the

calculated and the measured computational time gain could be
used to evaluate the code level of efficiency.

4. Conclusion

A 2D multiphase LBM, with the migrating multi-block method
was presented in this paper. The advantage of this model is the
simplicity of its algorithm and the ability to refine the mesh in re-
gions, where a better interface resolution is required, without
excessive computational cost and loss of accuracy. The method
was used with a lattice spacing ratio of m = 2 which is not explicit.
Higher values can be used, provided that numerical diffusion is
well controlled. Expansion of the model into three dimensions will
be the focus of a future work since time saving in 3D models is
more significant.
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